Quick Guide to Power Series

For Ryan Holben's Math 3D class, Winter 2015 at UC Irvine 1.

1 Introduction

The aim of this guide is to get you up and running with power series as quickly as possible, so that you can use them to solve differential equations. I have omitted a lot of background material about basic series, which we covered in class.

1.1 Basic forms

General power series are of the form

$$
\sum_{n=k}^{\infty} a_{n}(x-a)^{n}
$$

This is a series centered at a. However, often our series will start at $n=0$ and will be centered at $a=0$, giving us a sum of the form

$$
\sum_{n=0}^{\infty} a_{n} x^{n}
$$

A specific kind of power series is called a Taylor series. The Taylor series centered at a for a function $f(x)$ is

$$
\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}
$$

Again, we will usually center our series at 0 . This is sometimes called a Maclaurin series, and it looks like

$$
\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!}(x-a)^{n}
$$

2 Useful series

$$
\begin{gathered}
e^{x}=\sum_{n=0}^{\infty} \frac{1}{n!} x^{n} \\
\sin (x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} x^{2 n+1}, \quad \cos (x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} x^{2 n} \\
\sinh (x)=\sum_{n=0}^{\infty} \frac{1}{(2 n+1)!} x^{2 n+1}, \quad \cosh (x)=\sum_{n=0}^{\infty} \frac{1}{(2 n)!} x^{2 n} \\
\text { Geometric series, when }|r|<1: \quad \sum_{n=0}^{\infty} r^{n}=\frac{1}{1-r} \\
p \text {-series converges for } p>1: \quad \sum_{n=0}^{\infty} \frac{1}{n^{p}}
\end{gathered}
$$

3 Radius of convergence

Let us see how to find the radius of convergence for a power series.

3.0.1 Example 1

$$
\sum_{n=0}^{\infty} \frac{2^{n}}{n^{2} e^{n}}(x-5)^{n}
$$

First we do the ratio test:

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left|\frac{2^{n+1}(x-5)^{n+1}}{(n+1)^{2} e^{n+1}} \frac{n^{2} e^{n}}{2^{n}(x-5)^{n}}\right| \\
= & \lim _{n \rightarrow \infty} \frac{2}{e}\left(\frac{n}{n+1}\right)^{2}|x-5|=\frac{2}{e}|x-5|
\end{aligned}
$$

The ratio test says the sum will converge if this limit is less than 1. Therefore to find out which x make our sum converge, we will write the inequality and solve for x.

$$
\begin{gathered}
\frac{2}{e}|x-5|<1 \\
|x-5|<\frac{e}{2}
\end{gathered}
$$

This step tells us that our radius of convergence is $\frac{e}{2}$. Let's continue to find the interval of convergence:

$$
-\frac{e}{2}<x-5<\frac{e}{2}
$$

$$
5-\frac{e}{2}<x<\frac{e}{2}+5
$$

So the interval of convergence is from $5-\frac{e}{2}$ to $5+\frac{e}{2}$. But what about the endpoints? We must test them separately by plugging them in for x into the original sum and testing for convergence. First, let $x=5-\frac{e}{2}$. Our sum becomes

$$
\begin{gathered}
\sum_{n=0}^{\infty} \frac{2^{n}}{n^{2} e^{n}}\left(\left(5-\frac{e}{2}\right)-5\right)^{n} \\
=\sum_{n=0}^{\infty} \frac{2^{n}}{n^{2} e^{n}}\left(\frac{-e}{2}\right)^{n}=\sum_{n=0}^{\infty} \frac{2^{n}}{n^{2} e^{n}} \cdot \frac{(-1)^{n} e^{n}}{2^{n}}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n^{2}}
\end{gathered}
$$

This is the alternating sum version of the p-series for $p=2$. Since that p-series converges and is the absolute version of our sum, we say that our series at $x=5-\frac{e}{2}$ is absolutely convergent, and therefore is convergent. Thus $5-\frac{e}{2}$ is included in our interval of convergence. Next, let $x=5+\frac{e}{2}$.

$$
\begin{gathered}
\sum_{n=0}^{\infty} \frac{2^{n}}{n^{2} e^{n}}\left(\left(5+\frac{e}{2}\right)-5\right)^{n} \\
=\sum_{n=0}^{\infty} \frac{2^{n}}{n^{2} e^{n}}\left(\frac{e}{2}\right)^{n}=\sum_{n=0}^{\infty} \frac{2^{n}}{n^{2} e^{n}} \cdot \frac{e^{n}}{2^{n}}=\sum_{n=0}^{\infty} \frac{1}{n^{2}}
\end{gathered}
$$

This is a p-series with $p=2$, so it converges. Thus $5+\frac{e}{2}$ is included in our interval of convergence. So our series converges at both endpoints, so the interval of convergence is the closed interval [$5-\frac{e}{2}, 5+\frac{e}{2}$].

3.0.2 Example 2

Let's do a faster example. Our series is

$$
\sum_{n=0}^{\infty}\left(\frac{2}{3}\right)^{n} x^{n}
$$

Do the ratio test:

$$
\lim _{n \rightarrow \infty}\left|\frac{2^{n+1} x^{n+1}}{3^{n+1}} \frac{3^{n}}{2^{n} x^{n}}\right|=\lim _{n \rightarrow \infty} \frac{2}{3}|x|=\frac{2}{3}|x|<1
$$

So

$$
\begin{gathered}
|x|<\frac{3}{2} \\
-\frac{3}{2}<x<\frac{3}{2}
\end{gathered}
$$

The radius of convergence is $\frac{3}{2}$. Test $x=-\frac{3}{2}$:

$$
\sum_{n=0}^{\infty}\left(\frac{2}{3}\right)^{n}\left(\frac{-3}{2}\right)^{n}=\sum_{n=0}^{\infty}(-1)^{n} \text { diverges. }
$$

And test $x=\frac{3}{2}$:

$$
\sum_{n=0}^{\infty}\left(\frac{2}{3}\right)^{n}\left(\frac{3}{2}\right)^{n}=\sum_{n=0}^{\infty} 1=\infty
$$

And so our series doesn't converge for either endpoint, so our interval of convergence is the open interval $\left(-\frac{3}{2}, \frac{3}{2}\right)$.

4 Finding a Taylor series

4.0.3 Example: $f(x)=\frac{1}{x}$

Let's find the Taylor series for $f(x)$. Now power series are defined on intervals, but $\frac{1}{x}$ is not defined at 0 . Therefore, any Taylor series we come up with for our function will end up being defined on an interval which does not contain 0 . In your homework you do find the Taylor series for this function centered at 1. In this guide we'll center it at 2 .

First, start taking derivatives so we can see if there is a pattern

n	$f^{(n)}(x)$	$f^{(n)}(2)$
0	x^{-1}	$\frac{1}{2}$
1	$(-1) x^{-2}$	$\frac{-1}{2^{2}}$
2	$(-1)(-2) x^{-3}$	$\frac{2}{2^{3}}$
\vdots	\vdots	\vdots

We see the pattern:

$$
f^{(n)}(x)=\frac{(-1)^{n} n!}{x^{n}}, \text { and so } f^{(n)}(2)=\frac{(-1)^{n} n!}{2^{n}}
$$

So the Taylor series is

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n} n!}{2^{n}} \frac{1}{n!}(x-2)^{n}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{n}}(x-2)^{n}
$$

Finally let's quickly check the interval of convergence.

$$
\lim _{n \rightarrow \infty}\left|\frac{(-1)^{n+1}(x-2)^{n+1}}{2^{n+1}} \frac{2^{n}}{(-1)^{n}(x-2)^{n}}\right|=\lim _{n \rightarrow \infty} \frac{1}{2}|x-2|<1
$$

So $|x-2|<2$ meaning our radius is 2 . Our endpoints are 0 and 4 .
$\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{n}}(0-2)^{n}=\sum_{n=0}^{\infty} 1=\infty$ and $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{n}}(4-2)^{n}=\sum_{n=0}^{\infty}(-1)^{n}$ diverges,
so neither endpoint is included. The interval of convergence is $(0,4)$.
Remember that $f(x)$ is not defined at 0 and our series is centered at 2 . Therefore $r=2$ is the largest possible radius that works, and indeed that's the radius we found.

5 Manipulating sums

It is useful to do various operations to power series, like adding, scaling, differentiating, integrating, as well as reindexing them.
5.0.4 Example: $\frac{d}{d x} \sin (x)=\cos (x)$

We differentiate series term by term:

$$
\begin{gathered}
\frac{d}{d x} \sin (x)=\frac{d}{d x} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} x^{2 n+1} \\
=\sum_{n=0}^{\infty} \frac{d}{d x}\left[\frac{(-1)^{n}}{(2 n+1)!} x^{2 n+1}\right]=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!}(2 n+1) x^{2 n}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} x^{2 n}=\cos (x)
\end{gathered}
$$

Whenever we take a derivative, we have to be careful about where our sum starts. Plug in the first index and make sure that taking the derivative of the first term won't make it go to 0 . If it does, you need to omit that term from your series. In our case, if $n=0$, the first term has $x^{2(0)+1}=x$, so taking its derivative won't eliminate it.
5.0.5 Example: $\frac{d}{d x} \cos (x)=-\sin (x)$

$$
\begin{gathered}
\frac{d}{d x} \cos (x)=\frac{d}{d x} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} x^{2 n} \\
=\sum_{n=0}^{\infty} \frac{d}{d x}\left[\frac{(-1)^{n}}{(2 n)!} x^{2 n}\right]=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{(2 n)!}(2 n) x^{2 n-1}=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{(2 n-1)!} x^{2 n-1}
\end{gathered}
$$

Notice in the last step, our sum has changed so that it starts at $n=1$. To see why, let's plug in $n=0$ into our original sum. That term has $x^{2(0)}=x^{0}=1$, so it is constant. Thus when we take its derivative we will get 0 , so we must omit the $n=0$ term from our series, and so we start at $n=1$.

Unfortunately, we don't recognize this series! All of the series we're used to start at $n=0$. Let's reindex to get a sum that starts at 0 . Let $k=n-1$. This also means $k(1)=1-1=0$, and $n=k+1$, so our sum becomes

$$
\begin{aligned}
& \sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{(2(k+1)-1)!} x^{2(k+1)-1}=\sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{(2 k+1)!} x^{2 k+1} \\
= & \sum_{k=0}^{\infty} \frac{(-1)(-1)^{k}}{(2 k+1)!} x^{2 k+1}=-\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)!} x^{2 k+1}=-\sin (x)
\end{aligned}
$$

On the last line, we first factor out a -1 . In the last step, notice that we have the sum for sine, except with k instead of n. The variable name we use for the index does not matter.

6 Solving linear $2^{\text {nd }}$ order ODEs using infinite series

Consider the linear differential equation

$$
p(x) y^{\prime \prime}+q(x) y^{\prime}+r(x) y=0
$$

where p, q, and r are polynomials. If x_{0} is a point where $p\left(x_{0}\right) \neq 0$, we say that x_{0} is an ordinary point. Otherwise it is a singular point. In this section, we look at a series solution at an ordinary (nonsingular) point.
6.0.6 Example: $y^{\prime \prime}+y=0$

Note that this is not quite the example from the book.
We try a power series solution centered at $x_{0}=0$. Note that our $p(x)$, the coefficient in front of $y^{\prime \prime}$ is simply 1 , so x_{0} is an ordinary point. Start with the generic power series

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n} .
$$

We want to plug this series into our differential equation, but to do so we need $y^{\prime \prime}$. So take derivatives:

$$
y^{\prime}=\frac{d}{d x} \sum_{n=0}^{\infty} a_{n} x^{n}=\sum_{n=0}^{\infty} \frac{d}{d x} a_{n} x^{n}=\sum_{n=1}^{\infty} n a_{n} x^{n-1}
$$

and

$$
y^{\prime \prime}=\frac{d}{d x} \sum_{n=1}^{\infty} n a_{n} x^{n-1}=\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
$$

Notice that we have chosen to start the series for our derivatives at 1 and 2 , respectively. As was pointed out in class, this is not necessary, because if you plug in $n=0$ (and in the case of the $2^{\text {nd }}$ derivative, $n=1$), those terms still become 0 . However, it will matter in a moment when we add our sums together. In this problem, we will reindex our sums so that they all contain x^{n}. For this reindexing to work out, we'll need the sum for $y^{\prime \prime}$ to start at $n=2$.

Putting the series into our differential equation, we have

$$
y^{\prime \prime}+y=\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}+\sum_{n=0}^{\infty} a_{n} x^{n}=0
$$

Now let's reindex the first sum. Let $k=n-2$ (and simultaneously, $n=k+2$). So

$$
y^{\prime \prime}=\sum_{k=0}^{\infty}(k+2)(k+1) a_{k+2} x^{k}
$$

Let's change the index back to n, and plug into our differential equation:

$$
\begin{aligned}
& \sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}+\sum_{n=0}^{\infty} a_{n} x^{n}=0 \\
& \quad=\sum_{n=0}^{\infty}\left[(n+2)(n+1) a_{n+2}+a_{n}\right] x^{n}=0
\end{aligned}
$$

For this to equal 0 , it must equal 0 for all x, so

$$
(n+2)(n+1) a_{n+2}+a_{n}=0
$$

Thus

$$
a_{n+2}=\frac{-a_{n}}{(n+2)(n+1)}
$$

This is a recurrence relation/recursive definition which defines the sequence of numbers a_{n}. It says that if you know a number a_{n}, you can define the $2^{\text {nd }}$ number after it. Realize, however, that this means we don't know the first two numbers a_{0} and a_{1}. The formula only starts helping us starting with a_{2}.

Let's figure out some values:

a_{0}	a_{1}
$a_{2}=a_{(0)+2}=\frac{-a_{0}}{(0+2)(0+1)}=\frac{-a_{0}}{2!}$	$a_{3}=a_{(1)+2}=\frac{-a_{1}}{(1+2)(1+1)}=\frac{-a_{1}}{3!}$
$a_{4}=\frac{a_{0}}{(2+2)(2+1)}=\frac{a_{0}}{4 \cdot 3 \cdot 2!}=\frac{a_{0}}{4!}$	$a_{5}=\frac{a_{1}}{5!}$
\vdots	\vdots
$a_{2 n}=\frac{(-1)^{n} a_{0}}{(2 n)!}$	$a_{2 n+1}=\frac{(-1)^{n} a_{1}}{(2 n+1)!}$

So the terms of our series have a factor of a_{0} if they are even terms, and a factor of a_{1} if they are odd terms. Let's plug in the a_{n} 's into our original power series, but we must remember that it needs to be split into even and odd terms:

$$
\begin{gathered}
y=\sum_{n=0}^{\infty} a_{2 n} x^{2 n}+\sum_{n=0}^{\infty} a_{2 n+1} x^{2 n+1} \\
=\sum_{n=0}^{\infty} \frac{(-1)^{n} a_{0}}{(2 n)!} x^{2 n}+\sum_{n=0}^{\infty} \frac{(-1)^{n} a_{1}}{(2 n+1)!} x^{2 n+1} \\
=a_{0} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} x^{2 n}+a_{1} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} x^{2 n+1} \\
=a_{0} \cos (x)+a_{1} \sin (x)
\end{gathered}
$$

